
Documentation on the NetBSD
Packages System

Jul 2000

Documentation on the NetBSD Packages System
by Hubert Feyrer and Alistair Crooks

Table of Contents
I. Introduction ...??

1. Intro...??
1.1. Overview..??
1.2. Terminology...??

II. User’s Guide ...??

2. Installing a precompiled binary package..??
2.1. Where to get...??
2.2. How to use..??

2.2.1. Local packages...??
2.2.2. Packages available via FTP..??
2.2.3. Tips & Tricks...??

2.3. A word of warning..??
3. Installing by Building..??

3.1. Where to get pkgsrc..??
3.2. Fetching distfiles...??
3.3. How to build and install..??

4. Making a precompiled package..??

III. Package Constructor’s Guide ...??

5. Package components - files, directories and contents...??
5.1.Makefile ...??
5.2. files/* ...??
5.3.patches/* ...??
5.4.pkg/* ...??

5.4.1. Mandatory files..??
5.4.2. Optional files..??

5.5.scripts/* ...??
5.6.work/* ...??
5.7. Importing the package into CVS..??

6. PLIST* issues...??
6.1. Miscellaneous...??
6.2. MD/MI vs. generalPLIST ..??

6.2.1.PLIST_SRC ..??
6.2.2.PLIST-mi , PLIST-md.shared , PLIST-md.static??
6.2.3. Order in the PLIST* file(s)..??

7. Notes on fixes for packages...??
7.1. CPP defines...??
7.2. Shared libraries - libtool...??
7.3. Using libtool on GNU packages that already support libtool...................................??

5

7.4. Gotchas of FreeBSD ports..??
7.5. Feedback to the author..??

8. The build process..??
8.1. Program locations...??
8.2. Main targets..??
8.3. Other helpful targets...??

9. Debugging...??
10. FAQs & features of the package system...??

10.1. Packages using GNU autoconfig..??
10.2. Other distrib methods than.tar.gz ...??
10.3. Packages not creating their own subdirectory..??
10.4. Custom configuration process..??
10.5. Packages not building in theirDISTNAMEdirectory...??
10.6. How to fetch all distfiles at once..??
10.7. How to fetch files from behind a firewall...??
10.8. If your patch contains an RCS ID...??
10.9. How to pull in variables from/etc/mk.conf ..??
10.10. Is there a mailing list for pkg-related discussion?..??
10.11. How do I tell “make fetch ” to do passive FTP?...??
10.12. Dependencies on other packages..??
10.13. Conflicts with other packages...??
10.14. Software which has a WWW Home Page..??
10.15. How to handle modified distfiles with the ’old’ name..??
10.16. What doesDon’t know how to make /usr/share/tmac/tmac.andoc mean?.??
10.17. How to handle incrementing versions when fixing an existing package..............??
10.18.Could not find bsd.own.mk - what’s wrong?...??

11. Submitting...??
11.1. Precompiled binary packages...??
11.2. packages...??

12. A simple example of a package: bison..??
12.1. Files..??

12.1.1.Makefile ..??
12.1.2.pkg/COMMENT..??
12.1.3.pkg/DESCR ..??
12.1.4.pkg/PLIST ..??

12.2. Checking a package with “pkglint ” ..??
12.3. Steps for building, installing, packaging..??

A. Build logs ..??

A.1. Building top...??
A.2. Packaging top..??

B. Layout of the FTP server’s package archive...??

6

I. Introduction

Chapter 1. Intro
There is a lot of software freely available for Unix based systems, which usually runs on NetBSD, too,
sometimes with some modifications. The NetBSD Packages Collection incorporates any such changes
necessary to make that software run on NetBSD, and makes the installation (and deinstallation) of the
software package easy by means of a single command.

The NetBSD Package System is used to enable such freely available third-party software to be built
easily on NetBSD hosts. Once the software has been built, it is manipulated with the pkg_* tools so
that installation and de-installation, printing of an inventory of all installed packages and retrieval of
one-line comments or more verbose descriptions are all simple.

The NetBSD Package System and parts of the NetBSD Packages Collection are derived from FreeBSD
and it’s ports collection.

1.1. Overview
This document is divided into two parts. The first, “User’s Guide”, describes how one can use one
of the packages in the Package Collection, either by installing a precompiled binary package, or by
building your own copy using the NetBSD package system. The second part, “Package Constructor’s
Guide”, explains how to prepare a package so it can be easily built by other NetBSD users without
knowing about the package’s building details.

1.2. Terminology
There has been a lot of talk about "ports", "packages", etc. so far. Here is a description of all the
terminology used within this document:

Package:

A set of files and building instructions that describe what’s necessary to build a certain piece of
software using the NetBSD package system. Packages are traditionally stored under/usr/pkgsrc .

The NetBSD Package System:

This is the part of the NetBSD operating system handling building (compiling), installing, and
removing of packages.

Distfile:

This term describes the file or files that are provided by the author of the piece of freely available
software to distribute his work. All the changes necessary to build on NetBSD are reflected in
the corresponding package. Usually the distfile is in the form of a compressed tar-archive, but
other types are possible, too. Distfiles are stored below/usr/pkgsrc/distfiles .

9

Chapter 1. Intro

Port:

This is the term used by FreeBSD people for what NetBSD calls a package. In NetBSD termi-
nology, "port" refers to the code for getting NetBSD going on a certain hardware architecture.

Precompiled (binary) package:

A set of binaries built by the NetBSD package system from a distfile using the NetBSD package
system and stuffed together in a single .tgz file so it can be installed on machines of the same ma-
chine architecture without the need to recompile. Packages are generated in/usr/pkgsrc/packages

by the NetBSD package system; there is also an archive on ftp.netbsd.org.

Sometimes, this is referred to by the term "package" too, especially in the context of precompiled
packages.

Program:

The piece of software to be installed which will be constructed from all the files in the Distfile
by the actions defined in the corresponding package.

10

II. User’s Guide

11

Chapter 1. Intro

12

Chapter 2. Installing a precompiled binary
package

This section describes how to find, retrieve and install a precompiled binary package that someone
else already prepared for your type of machine.

2.1. Where to get
Precompiled packages are stored on ftp.netbsd.org and its mirrors in the directory/pub/NetBSD/packages

for anon FTP access. Please pick the right subdirectory there as indicated by “sysctl hw.machine_arch ”.
In that directory, there is a subdirectory for each category, plus a subdirectoryAll which includes the
actual binaries in .tgz-files. The category subdirectories use symbolic links to those files. (This is the
same directory layout as in/usr/pkgsrc/packages).

This same directory layout applies for CDROM distributions, only that the directory may be rooted
somewhere else, probably somewhere below/cdrom . Please consult your CDROM’s documentation
for the exact location!

2.2. How to use
This section describes how to install binary packages from CDROM, local disk or via FTP. Regardles
of where you install from, be sure to have/usr/pkg and /usr/X11R6 in your $PATH so you can
actually start the just installed program.

2.2.1. Local packages
If you have the files on a CDROM or downloaded them to your hard disk, you can install them with
the following command (be sure to “su ” to root first):

pkg_add /path/to/package-vers.tgz

Examples:

pkg_add /usr/pkgsrc/packages/All/wget-1.5.3.tgz
pkg_add /cdrom/packages/All/wget-1.5.3.tgz

If you want to see what’s going on, you can always add the -v option to “pkg_add ”.

13

Chapter 2. Installing a precompiled binary package

2.2.2. Packages available via FTP
If you have FTP access and you don’t want to download the packages via FTP prior to installation,
you can do this automatically by giving pkg_add an ftp-URL:

pkg_add ftp://ftp.netbsd.org/pub/NetBSD/packages/ OS-Version / arch /All/package-
vers.tgz

If there is any doubt about whichOS-Version andarch you need to use, the “sysctl ” utility can
be used to determine them by running “sysctl kern.osrelease hw.machine_arch ”.

Example:

sysctl kern.osrelease hw.machine_arch
kern.osrelease = 1.4.2
hw.machine_arch = i386
pkg_add ftp://ftp.netbsd.org/pub/NetBSD/packages/1.4.2/i386/All/wget-1.5.3.tgz
#

Note that any prerequisite packages needed to run the package in question will be installed too, assum-
ing they are present where you install from. You do not need to handle these manually, your desired
package will arrange for everything to get installed that it needs.

2.2.3. Tips & Tricks
If you don’t know a package’s version to install it, you can simply omit it, i.e.:

pkg_add /path/to/package
pkg_add ftp://ftp.netbsd.org/pub/NetBSD/packages/ OS-Version / arch /All/ package

will find out the most recent version ofpackage , and then install it. Examples:

pkg_add /usr/pkgsrc/packages/i386ELF/All/wget
pkg_add ftp://ftp.netbsd.org/pub/NetBSD/packages/1.4.2/i386/All/wget

When installing packages via FTP and you don’t give it a version number, don’t be surprised by any
errors you see - “pkg_add ” will first try to find the exact file you give it, before trying to find any
version, and as the exact file isn’t there, there will be an error. If you use -v on “pkg_add ”, you’ll see
what’s going on in detail.

If you want to install many packages and don’t want to type the full path to the package each time,
you can set the PKG_PATH environment variable to contain a semi(!)colon seperate list of locations
that may contain packages. Example:

PKG_PATH=/usr/pkgsrc/packages/All’;’ftp://ftp.netbsd.org/pub/NetBSD/packages/1.4.2/sparc/All
export PKG_PATH

14

Chapter 2. Installing a precompiled binary package

After you’ve set this (maybe in your root’s.cshrc or .profile), you can then just install a package
without giving it’s path/URL or version. Example:

pkg_add wget
#

2.3. A word of warning
Please pay very careful attention to the warnings expressed in the “pkg_add ” manual page about the
inherent dangers of installing binary packages which you did not create yourself, and the security
holes that can be introduced onto your system by indiscriminate adding of such files.

15

Chapter 2. Installing a precompiled binary package

16

Chapter 3. Installing by Building
This assumes that the package is already part of the NetBSD Package System. If it is not and you
want to make it ready for pkgsrc„ then you are advised to read part II of this document, “Package
Constructor’s Guide”.

3.1. Where to get pkgsrc
To get the package source going, you need to get thepkgsrc.tar.gz file from ftp://ftp.netbsd.org/pub/NetBSD-
current/tar_files/pkgsrc.tar.gz and unpack it into/usr/pkgsrc .

As an alternative, you can get pkgsrc via the Software Update Protocol, SUP. To do so, make sure your
supfile has a line saying “release=pkgsrc” in it, see the examples in/usr/share/examples/supfiles ,
and that the directory/usr/pkgsrc does exist. Then, simply start “sup -v /path/to/your/supfile ”.

3.2. Fetching distfiles
The distribution file (i.e. the unmodified source) must exist on your system for the packages system
to be able to build it. If it does not, then ftp(1) is used to fetch the distribution files automatically.

You can overwrite some of the major distribution sites to fit to sites that are close to your own.
Have a look at/usr/pkgsrc/mk/mk.conf.example to find some examples. This may save some
of your bandwidth and time. When you have selected your settings, install your configuration into
/etc/mk.conf .

If you don’t have a permanent Internet connection and you want to know which files to download,
“make fetch-list ” will give you a shell script that will help you downloading the files. When
done, put them into/usr/pkgsrc/distfiles .

3.3. How to build and install
Assuming you have fetched the distfiles, become root and change into the relevant subdirectory of
/usr/pkgsrc . Then you can type

make

at the shell prompt to build the various components of the package, and

make install

17

Chapter 3. Installing by Building

at the shell prompt to install the various components into the correct places on your system.

Taking the top system utility as an example, we can install it on our system by building as shown in
appendixBuilding top.

The program is installed under the default root of the packages tree,/usr/pkg . Should this not
conform to your tastes, simply set theLOCALBASEvariable in/etc/mk.conf , and it will use that
value as the root of your packages tree. So, to use/usr/local , put

LOCALBASE=/usr/local

in your /etc/mk.conf file. There is, of course, one exception to this. X11 packages are traditionally
installed in the X11 tree, which is identified byX11BASEand defaults to/usr/X11R6 .

It is possible to install X11 packages in the LOCALBASE tree, for which you must install the xpkg-
wedge package (pkgsrc/pkgtools/xpkgwedge), seeProgram locationsfor further details.

Some packages look in/etc/mk.conf to alter some configuration options at build time. Have a look
at /usr/pkgsrc/mk/mk.conf.example to get an overview of what you can set there.

If you want to (re)install a binary package that you’ve created (seebelow) or that you put into
.../pkgsrc/packages manually, you can use the the “bin-install” target, which will install a binary
package - if available - via “pkg_add ”, and do a “make package ” else.

18

Chapter 4. Making a precompiled package
Once you have built and installed the package as mentioned above, you can build it into a “binary
package” - you might want to do this so that you can use the binaries you have just built on another
NetBSD system, or to provide a simple means for others to use your binary package instead of wasting
CPU time - this is done by changing to the appropriate directory in thepkgsrc tree, and typing the
command

make package

at the shell prompt. This will build and install your package (if not already done), and then construct
a binary package out of the results so that you can use the pkg_* tools to manipulate this. The binary
package is stored under/usr/pkgsrc/packages , it’s in the form of a gzipped tar-file at the present
time. SeePackaging topfor a continuation of the above top example.

Please seeSubmittinglater in this document on submitting binary packages.

19

Chapter 4. Making a precompiled package

20

III. Package Constructor’s Guide

21

Chapter 4. Making a precompiled package

22

Chapter 5. Package components - files,
directories and contents

Whenever you’re preparing a package from the FreeBSD/OpenBSD ports collection or doing it from
scratch, there are a number of files involved which are described in the following sections. Special
directions are given for what differs from FreeBSD/OpenBSD ports for each file.

5.1. Makefile

Building, installation and creation of a binary package are all controlled by the package’s Makefile.

There is a Makefile for each package. This file includes the standardbsd.pkg.mk file (referenced as
"../../mk/bsd.pkg.mk"), which sets all the definitions and actions necessary for the package to
compile and install itself. The mandatory fields are theDISTNAMEwhich specifies the base name of
the distribution file to be downloaded from the site on the Internet,MASTER_SITESwhich specifies
that site,CATEGORIESwhich denotes the categories into which the package falls,PKGNAMEwhich is
the name of the package and theMAINTAINERname.

TheMASTER_SITESmay be set to one of the predefined sites:

• ${MASTER_SITE_XCONTRIB}

• ${MASTER_SITE_GNU}

• ${MASTER_SITE_PERL_CPAN}

• ${MASTER_SITE_TEX_CTAN}

• ${MASTER_SITE_SUNSITE}

If one of these predefined sites is chosen, you may require the ability to specify a subdirectory of
that site. Since these macros may expand to more than one actual site, youmustuse the following
construct to specify a subdirectory:

${MASTER_SITE_GNU:=subdirectory/name/}

Note the trailing slash after the subdirectory name. Use of the deprecatedMASTER_SITE_SUBDIR

will not work.

Currently the following values are available forCATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers corba fonts math packages sysutils
audio cross games mbone parallel templates
benchmarks databases graphics meta-pkgs pkgtools test

23

Chapter 5. Package components - files, directories and contents

biology devel ham misc plan9 textproc
cad distfiles japanese mk print www
comms editors lang net security x11

See the NetBSD packages(7) manual page for a description of all available options and variables.

Please pay attention to the following gotchas, especially when preparing a package from the FreeBSD
ports collection:

• Remove allMANx andCATx definitions from the packageMakefile - NetBSD has implemented
automatic manual page handling, and these definitions are obsolete.

• Add MANCOMPRESSED(if not already there) if manpages are installed in compressed form by the
package; Packages that evaluate theMANZvariable on their own should set this1. See comment in
bsd.pkg.mk .

• Replace/usr/local by ${PREFIX} in all files (seebelow)

• Delete any “ldconfig ” commands - this will be done automatically for you if the NetBSD plat-
form supports it, and other measures will be taken on platforms which don’t. (e.g. NetBSD/Alpha).

• If modifying a package from the FreeBSD ports collection, preserve their RCS ID: remove the ’$’s
around the FreeBSD RCS Id, and insert the wordFreeBSD, then add a$NetBSD$, i.e.:

before:

$Id: Makefile,v 1.17 1997/06/16 06:39:51 max Exp$

after:

$NetBSD$
FreeBSD Id: Makefile,v 1.17 1997/06/16 06:39:51 max Exp

• If the package installs any info files, the main info directory file needs to be updated to reflect this
fact. NetBSD now has anINFO_FILES definition, which is used to do this. For example, to install
the indent.info entry into the info directory file, simply use the

INFO_FILES= indent.info

definition in the packageMakefile . If the package does this insertion for you, you should specify
USE_GTEXINFO=1in the package Makefile, to ensure that the pre-requisite GNU texinfo package
is installed on your system.

24

Chapter 5. Package components - files, directories and contents

• Adjust MAINTAINER to be either yourself. Do not leave the FreeBSD value, as it is unlikely that
the FreeBSD people will care about NetBSD packages.

• If there exists a home page for the software in question, please add the variableHOMEPAGEright
afterMAINTAINER. The value of this variable should be the URL for the home page.

5.2. files/*

files/md5 :

Most important, the mandatory md5 checksum of all the distfiles needed for the package to
compile, confirming they match the original file any patches were generated against. This ensures
that the distfile retrieved from the Internet has not been corrupted during transfer or altered by a
malign force to introduce a security hole. It can be generated by hand using the md5(1) command
or by invoking “make makesum”.

files/patch-sum :

The checksum file for all the official patches for the package, found in thepatches/ directory
(seepatches/*). This checksum file includes an MD5 checksum of all lines in the patch file
except the NetBSD RCS Id. This file is generated by invoking “make makepatchsum ”.

Besides that, if you have any files that you wish to be placed in the package prior to configuration
or building, you could place these files here and use a “${CP} ” command in the pre-configure target
to achieve this. Alternatively, you could simply diff the file against/dev/null and use the patch
mechanism to manage the creation of this file.

5.3. patches/*

This directory contains files that are used by the patch(1) command to modify the sources as dis-
tributed in the distribution file into a form that will compile and run perfectly on NetBSD. The files
are applied successively in alphabetic order (as returned by a shell "patches/patch-*" glob expansion),
sopatch-aa is applied beforepatch-ab etc.

Thepatch- ?? files should be in “diff -bu ” format, and apply without a fuzz to avoid problems.
(The latter condition is ensured by settingPKG_DEVELOPERin /etc/mk.conf - the build will fail if

25

Chapter 5. Package components - files, directories and contents

a patch applies with fuzz only). Furthermore, do not put changes for more than one file into a single
patch-file, as this will make future modifications and maintainance more difficult.

One important thing to mention is to pay attention that no RCS IDs get stored in the patch files, as
these will cause problems when later checked into the NetBSD CVS tree. To avoid this, use the “-U

2” or “ -U 1 ” option to diff. handle this.

If you don’t want to worry about the problems in the last two paragraphs yourself, use “pkgdiff ”
from thepkgsrc/pkgtools/pkgdiff package, which takes care of any RCS IDs by itself.

For even more automation, we recommend using “mkpatches ” from the same package to make a
whole set of patches. You just have to backup files before you edit them tofilename.orig , e.g. with
“cp -p filename filename.orig ”. If you upgrade a package this way, you can easily compare
the new set of patches with the previously existing one with the “patchdiff ” command.

When preparing a FreeBSD port for the NetBSD packages system, it’s likely that the FreeBSD port
will work on NetBSD. However, check that the person who ported the software to FreeBSD has not
played fast and loose with the__FreeBSD__ cpp definition without good cause - a simple way to do
this is to do

grep -i freebsd patches/patch-??

in the package directory.

Besides taking care of any FreeBSDisms, be sure to provide patches to replace any occurrence of
/usr/local in anyMakefile s in the original package with${PREFIX} .

When you have finished a package, remember to generate the checksums for the patch files by using
the “make makepatchsum ” command, seefiles/*.

5.4. pkg/*

This directory contains several files used to manage the creation of binary packages. Files from this
directory are used in the binary package itself, and will thus be installed on other machines, so you
should be aware that there is a wider audience than you might think for your comments and witticisms.

5.4.1. Mandatory files

pkg/COMMENT:

A one-line description of the piece of software. There is no need to mention the package’s name
- this will automatically be added by the pkg_* tools when they are invoked.

pkg/DESCR:

26

Chapter 5. Package components - files, directories and contents

A multi-line description of the piece of software. This should include any credits where they
are due. Please bear in mind that others do not share your sense of humour (or spelling idiosyn-
crasies), and that others will read everything that you write here.

pkg/PLIST :

This file governs the files that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this file, to control the creation and deletion
of directories, and the location of inserted files.

If you’re updating a FreeBSD package to work for NetBSD, please pay special attention to the fol-
lowing things inpkg/PLIST :

• If there are any “@exec ldconfig ... ” statements, or any “@unexec ldconfig ... ”, delete
them. NetBSD works out automatically whether to call “ldconfig ”, since some NetBSD archi-
tectures do not have that command.

• Add any missing “@dirrm ” statements

• Remove anyMANx definitions in the packageMakefile .

You could also investigate the port2pkg package (pkgsrc/pkgtools/port2pkg), which does a lot
of the donkey work for you.

5.4.2. Optional files

pkg/INSTALL :

Shell script invoked twice during pkg_add. First time after package extraction and before files
are moved in place, the second time after the files to install are moved in place. This can be used
to do any custom procedures not possible with “@exec” commands inPLIST . See pkg_add(1)
and pkg_create(1) for more information.

pkg/DEINSTALL :

This script is executed before and after any files are removed. It is this script’s responsibility to
clean up any additional messy details around the package’s installation, since all pkg_delete
knows is how to delete the files created in the original distribution. See pkg_delete(1) and
pkg_create(1) for more information.

pkg/REQ :

27

Chapter 5. Package components - files, directories and contents

Require-script that is invoked before installation and de-installation to ensure things like certain
accounts being available, user/sysadmin agreeing with usage policy, etc.

pkg/MESSAGE:

Display this file after installation of the package. Useful for things like legal notices on almost-
free software, setup instructions etc.

5.5. scripts/*

This directory contains any files that are necessary for configuration of your software, etc. If a script
with any of the following names is present, it will be executed at the appropriate time during the build
process:

pre-fetch post-fetch
pre-extract post-extract
pre-patch post-patch
pre-configure post-configure configure
pre-build post-build
pre-install post-install
pre-package post-package

Note that you shouldnot define a pre-* or post-* target in the Makefile which executes the match-
ing scripts/{pre|post{-* script. bsd.pkg.mk runs any existingMakefile target first, then
searches forscripts/* and runs it using sh(1). Running the script from theMakefile would cause
it to be run twice.

SeeThe build processfor a description of the build process.

5.6. work/*

When you type “make” the distribution files are unpacked into this directory. It can be removed by
typing

make clean

28

Chapter 5. Package components - files, directories and contents

at the shell prompt. Also, this directory is used to keep various timestamp files.

5.7. Importing the package into CVS
This section is mostly of interrest to persons with write access to the NetBSD CVS repository, you
can ignore it if you use AnonCVS, SUP, ... to update your sources. Please seeSubmittingfor how to
submit a package instead.

Newly created packages should be imported with a vendor tag ofTNF and a release tag ofpkgsrc-

base , e.g.:

cvs import pkgsrc/category/frobnitz TNF pkgsrc-base

Packages derived from a FreeBSD port should be imported with a vendor tag ofFREEBSDand a
release tag ofFreeBSD-current- YYYY- MM- DD (YYYY- MM- DD being the date when the snapshot
of the port were taken form the FreeBSD tree), and then doing the necessary modifications by normal
CVS operations. E.g:

cvs import pkgsrc/category/mumbler FREEBSD FreeBSD-current-1998-04-01
cvs rm patches/patch-a
cvs add patches/patch-aa
cvs ci

Please note all package updates/additions indoc/pkg-CHANGES . It’s very important to keep this file
up to date and conforming to the existing format, because it will be used by scripts to automatically
update pages on www.netbsd.org (http://www.netbsd.org/).

Notes
1. TheMANZvariable can be set in/etc/mk.conf to install compressed manpages.

29

Chapter 5. Package components - files, directories and contents

30

Chapter 6. PLIST* issues
This section addresses some special issues that one needs to pay attention to when dealing with the
PLIST file (or files, see below).

6.1. Miscellaneous

NetBSD RCS Id:

Be sure to add a RCS ID line as the first thing in any PLIST file you write:

@comment $NetBSD$

“ ranlib ”:

Don’t put any “ranlib ” commands into yourPLIST files, as they will cause troubles when the
package is removed. Just make sure the build-process does run “ranlib ” - it usually does - and
you can leave this out. This is usually only a problem when using ports from FreeBSD.

“ ldconfig ”:

Don’t put any “ldconfig ” commands into yourPLIST files, as they will cause problems. All
shared object caching is done automatically in NetBSD (this takes place when you see theAu-

tomatic shared object handling message), and so you can leave this out. If any shared
objects are found in the package, they will be dealt with automatically, running “ldconfig ” on
platforms that need it. This is usually only a problem when using ports from FreeBSD.

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}:

Some packages like emacs and perl embed information about which architecture they were built
on into the pathnames where they install their file. To handle this case,PLIST will be pre-
processed before actually used, and the symbol “${MACHINE_ARCH}” will be replaced by what
“sysctl -n hw.machine_arch ” gives. The same is done if the string “${MACHINE_GNU_ARCH}”
is embedded inPLIST somewhere - use this on packages that use GNU autoconfigure. There are
a few more variables that are expanded, please see thePLIST_SUBST variable inbsd.pkg.mk .

Legacy note: There used to be a symbol “<$ARCH>” that was replaced by the output of “uname

-m”, but that’s no longer supported and has been removed.

${OPSYS} , ${OS_VERSION}:

31

Chapter 6.PLIST* issues

Some packages want to embed the OS name and version into some paths. to do this, use these two
variables inPLIST . “${OPSYS} ” will be replaced by output from “uname -s ”, “ ${OS_VERSION}”
will be set to what “uname -r ” gives.

Manpage-compression:

The package should install manpages in compressed form ifMANZis set (in/etc/mk.conf), and
uncompressed otherwise. To handle this in thePLIST file, the suffix “.gz ” is appended/removed
automatically for manpages according toMANZandMANCOMPRESSEDbeing set or not, see above
for details. This modification of thePLIST file is done on a copy of it, notpkg/PLIST itself.

Semi-automatic PLIST generation:

You can use the “make print-PLIST ” command to output aPLIST that matches any new files
since the package was extracted. If the package installs files via tar(1) or other methods that don’t
update file access times, be sure to add these files manually to yourpkg/PLIST !

6.2. MD/MI vs. general PLIST

Sometimes the packaging list inpkg/PLIST differs between platforms, e.g. if one of them supports
shared libs and the other does not. To address this, a hook has been introduced into the NetBSD
packages system to provide aPLIST file defined on conditions set freely in the package’s Makefile.

6.2.1. PLIST_SRC

To use one or more files as source for the PLIST used in generating the binary package, set the
variablePLIST_SRC to the names of that file(s). The files are later concatenated using cat(1), and
order of things is an important issue, see below.

6.2.2. PLIST-mi , PLIST-md.shared , PLIST-md.static

If PLIST_SRC is not set (the usual case), and if there is nopkg/PLIST , the packages system looks
for pkg/PLIST-mi , andpkg/PLIST-md.shared or pkg/PLIST-md.static to handle differences
due to the platform being able to handle shared libs or not.PLIST-mi contains machine independent
files, PLIST-md.* contain machine dependent files, which may differ between architectures that
don’t support dynamic libs/shared loading.

32

Chapter 6.PLIST* issues

Currently, this is only used in the perl-packages, and as perl5 on alpha doesn’t support dynamic
loading of extensions like perl/Tk yet,PLIST.mi-static is also used on the alpha (besides pmax
and powerpc). Alpha will hopefully be removed soon when perl’s fixed for dynamic loading.

(This handling of MI/MD PLIST files is implemented by settingPLIST_SRC to either “PLIST-mi

PLIST-md.static ” or “ PLIST-mi PLIST-md.shared ”, see/usr/pkgsrc/mk/bsd.pkg.mk).

6.2.3. Order in the PLIST* file(s)
There is one gotcha regarding the ordering of “@dirrm ” statements: any MI “@dirrm ” directives
that follow any MD “@dirrm ”s must go into thePLIST.md-* files, as the filesPLIST-mi and
PLIST.md-{shared/static} are concatenated in exactly this order. If the MI directory would
be listed inPLIST-mi , it would be removed before the MD directory, which wouldn’t work.

E.g. if you have the following dirs:

foo/mi
foo/mi/md

thenPLIST-mi contains:

nothing

andPLIST-md.* contain:

@dirrm foo/mi/md
@dirrm foo/mi

This will lead to some “@dirrm ” statements being duplicated, but it’s the only way to ensure every-
thing is properly removed. The same care must be taken whenPLIST_SRC is set to some package-
specific settings.

33

Chapter 6.PLIST* issues

34

Chapter 7. Notes on fixes for packages

7.1. CPP defines
To port an application to NetBSD, it’s usually necessary for the compiler to be able to judge the
system on which it’s compiling, and we use definitions so that the C pre-processor can do this.

The really impatient should just note that a number of the FreeBSD ports (which are called packages
in the NetBSD world) rely on the CPP definition__FreeBSD__ . This should be used sparingly, for
FreeBSD-specific features, but unfortunately this is not always the case. A number also rely on the
fact that the CPU type is an Intel-based CPU with little-endian byte order.

To test whether you are working on a 4.4 BSD-derived system, you should use the BSD definition,
which is defined in<sys/param.h > on said systems.

#include <sys/param.h >

and then you can surround the BSD-specific parts of your port using the conditional:

#if (defined(BSD) && BSD >= 199306)
...
#endif

Please use the__NetBSD__ definition sparingly - it should only apply to features of NetBSD that are
not present in other 4.4-lite derived BSDs.

You should also avoid defining__FreeBSD__=1 and then simply using the FreeBSD port, if only
from an aesthetic viewpoint.

7.2. Shared libraries - libtool
NetBSD supports many different machines, with different object formats like a.out and ELF, and vary-
ing abilities to do shared library and dynamic loading at all. To accompany this, varying commands
and options have to be passed to the compiler, linker etc. to get the Right Thing, which can be pretty
annoying especially if you don’t have all the machines at your hand to test things. The libtool package
(pkgsrc/devel/libtool) can help here, as it just “knows” how to build both static and dynamic libraries
from a set our source files, thus being platform independent.

Here’s how to use libtool in a package in six simple steps:

1. Add USE_LIBTOOL=yes to the package Makefile.

35

Chapter 7. Notes on fixes for packages

2. For library objects, use “${LIBTOOL} -mode=compile ${CC} ” in place of “${CC} ”. You
could even add it to the definition ofCC, if only libraries are being built in a given Makefile. This
one command will build both PIC and non-PIC library objects, so you need not have separate
shared and non-shared library rules.

3. For the linking of the library, remove any “ar ”, “ ranlib ”, and “ld -Bshareable ” commands,
and use instead:

${LIBTOOL} -mode=link cc -o ${.TARGET:.a=.la} ${OBJS:.o=.lo} -rpath ${PRE-
FIX}/lib -version-info major:minor

Note that the library is changed to have a.la extension, and the objects are changed to have a
.lo extension. Change theOBJSvariable as necessary. This automatically creates all of the.a ,
.so.major.minor , and ELF symlinks (if necessary) in the build directory.

4. When linking programs that depend on these librariesbeforethey are installed, preface the “cc ”
or “ld ” line with “ ${LIBTOOL} -mode=link ”, and it will find the correct libraries (static or
shared), but please be aware that libtool will not allow you to specify a relative path in-L (such
as-L../somelib), because it is trying to force you to change that argument to be the.la file.
For example

${LIBTOOL} -mode=link ${CC} -o someprog -L../somelib -lsomelib

won’t work; it needs to be changed to:

${LIBTOOL} -mode=link ${CC} -o someprog ../somelib/somelib.la

and it will DTRT with the libraries. If youmustuse a relative path with-L , and you are not going
to run this program before installing it, you can omit the use of libtool during link and install of
this program if you add the subdirectory.libs in your “-L ” command:

${CC} -o someprog -L../somelib/.libs -lsomelib

5. When installing libraries, preface the “install ” or “ cp ” command with “${LIBTOOL} -

mode=install ”, and change the library name to.la . For example:

${LIBTOOL} -mode=install ${BSD_INSTALL_DATA} ${SOMELIB:.a=.la} ${PREFIX}/lib

This will install the static.a , shared library, any needed symlinks, and run “ldconfig ”.

6. In your PLIST , include the.a , .la , and.so.major.minor files. Don’t include the ELF sym-
link files (.so.major , .so); those are added automatically.

36

Chapter 7. Notes on fixes for packages

Do not use pkglibtool! Previously, the package system used its own version of libtool from pkgtools.
However, over time, this version became outdated and is now deprecated. You may see some defini-
tions ofUSE_PKGLIBTOOLin existing packages that still use this outdated version of libtool. Please
do not use this definition in new packages!

7.3. Using libtool on GNU packages that already
support libtool

Add USE_LIBTOOL=yes andLTCONFIG_OVERRIDE=${WRKSRC}/ltconfig to the packageMake-

file as the quick way to bypass the package’s own libtool. The package’s own libtool is made by
the “ltconfig ” script at “do-configure ” time. If USE_LIBTOOLandLTCONFIG_OVERRIDEare
defined, the specifiedltconfig is overridden, using the “devel/libtool ” command instead of the
package’s own libtool. If the pkg already has an original “libtool ” which we can replace with the
pkgsrc/devel/libtool you may have to specifyLIBTOOL_OVERRIDEto the packageMakefile .

7.4. Gotchas of FreeBSD ports
See theMakefilesection for Makefile issues (MANx , CATx , MANCOMPRESSED, ldconfig, RCS IDs) and
patches/*for gotchas on using patches from FreeBSD ports.

One of the biggest problems with FreeBSD ports is that too many of them assume they will install into
/usr/local , instead of honouring any${PREFIX} setting properly. To change this, add something
like the following into your package Makefile:

pre-configure:
for f in ‘find ${WRKDIR} -type f -print \

|xargs grep -l ’/usr/local’‘; do \
${SED} -e ’s:/usr/local:’${PREFIX}’:g’ < $$f > $$f.pdone \

&& ${MV} $$f.pdone $$f; \
done

This is taken from the sysutils/rtty package; be sure this works for your package - it may actually make
sense to look for some things in/usr/local , for example. So don’t blindly replace all occurrences
of /usr/local !

FreeBSD has decided to list manual pages in the packageMakefile , with no corresponding entry in
thePLIST file. You will thus need to add anyMAN[1-8ln] files to thePLIST file before deleting the
MAN[1-8ln] definition. Similarly withMLINKS andCAT[1-8ln] entries.

Side note on manpages in PLIST: we don’t take any notice of any.gz suffix there, as many FreeBSD
ports seem to have.gz pages in PLIST even when they install manpages without compressing them;

37

Chapter 7. Notes on fixes for packages

rather, we add our own.gz suffix there according toMANZ. In short, it does not matter whether the
manual page name in thePLIST file has a.gz suffix or not - if it needs one which is not already there,
it will be appended automatically, and if there is a.gz suffix which is not needed, it will be deleted
automatically.

Some packages use bsd-style.mk files when building, and so any manual pages that are installed will
be gzip-compressed, ifMANZis set, or not ifMANZis not set. If the package uses bsd-style.mk files,
the variableMANCOMPRESSED_IF_MANZshould be set to a value ofyes in the packageMakefile .

7.5. Feedback to the author
If you have found any bugs in the package you make available, if you had to do special steps to make
it run under NetBSD or if you enhanced the software in various other ways, be sure to report these
changes back to the original author of the program! With that kind of support, the next release of the
program can incorporate these fixes, and people not using the NetBSD packages system can win from
your efforts.

Support the idea of free software!

38

Chapter 8. The build process
The basic steps for building a program are always the same. First the program’s source (distfile)
must be brought to the local system and then extracted. After any patches to compile properly on
NetBSD are applied, the software can be configured, then built (usually by compiling), and finally
the generated binaries etc. can be put into place on the system. These are exactly the steps performed
by the NetBSD package system, which is implemented as a series of targets in a central Makefile,
/usr/pkgsrc/mk/bsd.pkg.mk .

8.1. Program locations
Before outlining the process performed by the NetBSD package system in the next section, here’s a
brief discussion on where programs are installed, and which variables influence this.

The automatic variablePREFIX indicates where all files of the final program shall be installed. It is
usually set to$LOCALBASE(/usr/pkg), or $CROSSBASEfor pkgs in thecross category, though
its value becomes that of$X11BASE if USE_IMAKE, USE_MOTIF, or USE_X11BASEis set. The value
${PREFIX} needs to be put into the various places in the program’s source where paths to these files
are encoded; see sectionspatches/*andShared libraries - libtoolfor details on this.

When choosing which of these variables to use, follow the following rules:

• ${PREFIX} always points to the location where the current package will be installed. When refer-
ring to a package’s own installation path, use${PREFIX} .

• ${LOCALBASE} is where all non-X11 pkgs are installed. If you need to construct a-I or -L

argument to the compiler to find includes and libraries installed by another non-X11 pkg, use
${LOCALBASE}.

• ${X11BASE} is where the actual X11 distribution is installed. When looking forstandardX11
includes (not those installed by a pkg), use${X11BASE} .

• X11 based pkgs are special in that they may be installed in eitherX11BASEor LOCALBASE. To in-
stall X11 packages inLOCALBASE, simply install the xpkgwedge package (pkgsrc/pkgtools/xpkgwedge).
If you need to find includes or libraries installed by a pkg that hasUSE_IMAKE, USE_MOTIF, or
USE_X11BASEin its pkgMakefile , you need to useboth${X11BASE} and${LOCALBASE}.

• ${X11BASE} points to the root of the installed X11 tree. To refer to the installed location of an X11
package, use the${X11PREFIX} definition (this will be${LOCALBASE} if xpkgwedge is installed,
and${X11BASE} if not).

39

Chapter 8. The build process

8.2. Main targets
The main targets used during the build process defined inbsd.pkg.mk are:

fetch:

This will check if the file(s) given in the variablesDISTFILES andPATCHFILES (as defined
in the package’sMakefile) are present on the local system in/usr/pkgsrc/distfiles .
If they are not present, they will be fetched using ftp(1) from the site(s) given in the variable
PATCH_SITES. The location(s) inPATCH_SITESare in the form of URLs and can beftp:// -
andhttp:// -URLs, as ftp(1) understands both of them.

checksum:

After the distfile(s) are fetched, their MD5 checksum is generated and compared with the check-
sums stored in thefiles/md5 file. If the checksums don’t match, the build is aborted. This is
to ensure the same distfile is used for building, and that the distfile wasn’t changed, e.g. by some
malign force, deliberately changed distfiles on the master distribution site or network lossage.

extract:

When the distfiles are present on the local system, they need to be extracted, as they are usually in
the form of some compressed archive format, most commonly.tar.gz . If only some of the dis-
tfiles need to be uncompressed, the files to be uncompressed should be put intoEXTRACT_ONLY.
If the distfiles are not in.tar.gz format, they can be extracted by settingEXTRACT_CMD, EX-

TRACT_BEFORE_ARGSand/orEXTRACT_AFTER_ARGS.

patch:

After extraction, all the patches named by thePATCHFILES and those present in thepatches

subdirectory of the package are applied. Patchfiles ending in.Z or .gz are uncompressed before
they are applied, files ending in.orig or .rej are ignored. Any special options to patch(1) can
be handed inPATCH_DIST_ARGS. Seepatches/*for more details.

If the variablePKG_DEVELOPERis set in/etc/mk.conf , patch is given special args to make it
fail if the patches with some lines of fuzz. Please fix (regenerate) the patches so that they apply
cleanly. The rationale behind this is that patches that apply cleanly may end up being applied in
the wrong place, and cause severe harm there.

configure:

Most pieces of software need information on the header files, system calls, and library routines
which are available in NetBSD. This is the process known as configuration, and is usually auto-
mated. In most cases, a script is supplied with the source, and its invocation results in generation
of header files, Makefiles, etc.

If the program doesn’t come with its own configure script, one can be placed in the package’s
scripts directory, calledconfigure . If so, it is executed using sh(1).

40

Chapter 8. The build process

If the program’s distfile contains its own configure script, this can be invoked by settingHAS_CONFIGURE.
If the configure script is a GNU autoconf script,GNU_CONFIGUREshould be specified instead.
In either case, any arguments to the configure script can be specified in theCONFIGURE_ARGS

variable, and the configure script’s name can be set inCONFIGURE_SCRIPTif it differs from the
defaultconfigure .

If the program uses anImakefile for configuration, the appropriate steps can be invoked by
settingUSE_IMAKEto yes . (If you only want the package installed in$X11PREFIX but xmkmf
not being run, setUSE_X11BASEinstead!)

build:

Once configuration has taken place, the software can be built on NetBSD by invoking $MAKE_PROGRAM
on $MAKEFILE with $ALL_TARGET as the target to build. The default MAKE_PROGRAM is
“gmake” if USE_GMAKEis set, “make” otherwise.MAKEFILE is set toMakefile by default,
andALL_TARGETdefaults toall . Any of these variables can be set to change the default build
process.

install:

Once the build stage has completed, the final step is to install the software in public directo-
ries, for users. As in the build-target, $MAKE_PROGRAM is invoked on$MAKEFILE here, but
with the $INSTALL_TARGET instead, the latter defaulting to "install" (plus "install.man", if
USE_IMAKEis set).

If no target is specified, the default is "build". If a subsequent stage is requested, all prior stages are
made: e.g. "make build" will perform the equivalent of:

make fetch
make checksum
make extract
make patch
make configure
make build

41

Chapter 8. The build process

8.3. Other helpful targets

pre/post-*:

For any of the main targets described in the previous section, two auxiliary targets exist with
"pre-" and "post-" used as a prefix for the main target’s name. These targets are invoked before
and after the main target is called, allowing extra configuration or installation steps, for example,
which program’s configure script or install target omitted. For any of these auxiliary targets,
scripts of the same name can be placed in the package’sscripts -subdirectory that will be
executed at the given time, seescripts/*.

do-*:

Should one of the main targets do the wrong thing, and should there be no variable to fix this,
you can redefine it with the do-* target. (Note that redefining the target itself instead of the do-*
target is a bad idea, as the pre-* and post-* targets won’t be called anymore, etc.) You will not
usually need to do this.

reinstall:

If you did a “make install ” and you noticed some file was not installed properly, you can
repeat the installation with this target, which will ignore the "already installed" flag.

deinstall:

This target does a pkg_delete(1) in the current directory, effectively de-installing the package.
The following variables can be used either on the command line or in/etc/mk.conf to tune
the behaviour:

PKG_VERBOSE:

Add a "-v" flag to the pkg_delete(1) command.

DEINSTALLDEPENDS:

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. ifmake deinstall DE-

INSTALLDEPENDS=1is done inx11/kde , this is likely to remove whole KDE. Works by adding
a "-R" to the pkg_delete command line.

update:

42

Chapter 8. The build process

This target causes the current package to be updated to the latest version. The package and all
depending packages first get deinstalled, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series of “make deinstall ” and “make install ” for these packages.

You can use the "update" target to resume package updating in case a previous “make update ”
was interrupted for some reason. However, in this case, make sure you don’t call “make clean ”
or otherwise remove the list of dependent packages in${WRKDIR} . Otherwise you lose the abil-
ity to automatically update the current package along with the dependent packages you have
installed.

Resuming an interrupted “make update ” will only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
“make update ” will most certainly fail!

The following variables can be used either on the command line or in/etc/mk.conf to alter
the behaviour of “make update ”:

DEPENDS_TARGET:

Install target to use for the updated package and the dependent packages. Defaults toinstall .
E.g. “make update DEPENDS_TARGET=package”

NOCLEAN:

Don’t clean up after updating. Useful if you want to leave the work sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the "clean-update" target below) or you may run into troubles with old source code still
lying around on your next “make” or make update .

REINSTALL:

Use "reinstall" instead of ${DEPENDS_TARGET} for every package that gets updated. Be sure
you know the implications of using the "reinstall" target when using this variable.

clean-update:

Clean the source tree for all packages that would get updated if “make update ” was called
from the current directory. This target should not be used if the current package (or any of its
depending packages) have already been deinstalled (e.g., after calling “make update ”) or you
may lose some packages you intended to update. As a rule of thumb: only use this targetbefore
the first time you call “make update ” and only if you have a dirty package tree (e.g., if you used
NOCLEAN). The following variables can be used either on the command line or in/etc/mk.conf

to alter the behaviour of “make clean-update ”:

43

Chapter 8. The build process

CLEAR_DIRLIST:

After “make clean ”, do not reconstruct the list of directories to update for this package. Only
use this if “make update ” successfully installed all packages you wanted to update. Normally,
this is done automatically on “make update ”, but may have been suppressed by theNOCLEAN

variable (see above).

readme:

This target generates aREADME.html file, which can be viewed using a browser such as netscape
(pkgsrc/www/mozilla) or lynx (pkgsrc/www/lynx). The generated files contain references
to any packages which are in the${PACKAGES} directory on the local host. The generated files
can be made to refer to URLs based onFTP_PKG_URL_HOSTandFTP_PKG_URL_DIR. (For ex-
ample, if I wanted to generateREADME.html files which pointed to binary packages on the local
machine, in the directory/usr/packages , setFTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages . The${PACKAGES} directory and its subdirectories will
be searched for all the binary packages.)

readme-all:

Use this target to create a fileREADME-all.html which contains a list of all packages currently
available in the NetBSD Packages Collection, together with the category they belong to and a
short description. This file is compiled from thepkgsrc/*/README.html files, so be sure to
run thisafter a “make readme ”.

cdrom-readme:

This is very much the same as the "readme" target (see above), but is to be used when generating
a pkgsrc tree to be written to a CD-ROM. This target also producesREADME.html files, and can
be made to refer to URLs based onCDROM_PKG_URL_HOSTandCDROM_PKG_URL_DIR.

show-distfiles:

This target shows which distfiles and patchfiles are needed to build the package. (DISTFILES

andPATCHFILES, but notpatches/*)

show-downlevel:

This target shows nothing if the package is not installed. If a version of this package is installed,
but is not the version provided in this version of pkgsrc, then a warning message is displayed.
This target can be used to show which of your installed packages are downlevel, and so the old
versions can be deleted, and the current ones added.

show-pkgsrc-dir:

44

Chapter 8. The build process

This target shows the directory in the pkgsrc hierarchy from which the package can be built and
installed. This may not be the same directory as the one from which the package was installed.
This target is intended to be used by people who may wish to upgrade many packages on a
single host, and can be invoked from the top-level pkgsrc Makefile by using the target "show-
host-specific-pkgs".

check-shlibs:

After a package is installed, check all it’s binaries and (on ELF platforms) shared libraries if they
find the shared libs they need. Run by default ifPKG_DEVELOPERis set in/etc/mk.conf .

45

Chapter 8. The build process

46

Chapter 9. Debugging
To check out all the gotchas when building a package (either from a FreeBSD port, or from scratch),
here are the steps that I do in order to get a package working. Please note this is basically the same as
what was explained in the previous sections, only with some debugging aids.

1. Make surePKG_DEVELOPER=1is in /etc/mk.conf

2. Retrieve port from FreeBSD collection

3. Fix RCS-ID in the package’sMakefile , seeMakefile.

4. Import unchanged FreeBSD source (only if you have CVS write access, not needed otherwise):

(cd .../pkgsrc/category/pkgname ; cvs import pkgsrc/category/pkgname \
FREEBSD FreeBSD-current-yyyy-mm-dd)

5. If you did a CVS import, check it out to apply the following fixes (not needed if you don’t have
CVS access!)

6. Look atMakefile , fix if necessary; seeMakefile.

7. Look at patches, remember if not appropriate

8. Have a look atpkg/PLIST , add a “@comment $NetBSD$” line at the beginning of anyPLIST

file (seePLIST* issues).

9. make

10. If something is not ok, fix; for patches: fix the file, then re-generate the diff: “diff -bu

foo.orig foo >../../patches/patch-xx ” (“ mv patch-xx patch-xx.orig ” before);
If there’s nofoo.orig from a previous patch, be sure to have an old version of the file some-
where; re-iterate :)

11. If all builds OK: “touch /tmp/bla ”

12. make install

13. “ find /usr/pkg/ /usr/X11R6/ -newer /tmp/bla >/tmp/x ” (or whatever you setLO-

CALBASEandX11BASEto)

14. “pkg_delete blub ”

15. “ find /usr/pkg/ /usr/X11R6/ -newer /tmp/bla ” (or diff against output of “make print-

PLIST ”): if this brings up any files, that are missing inpkg/PLIST* ; add them.

16. Comparepkg/PLIST* against/tmp/x , fix the former one (“sort /tmp/x >/tmp/x2 ;

sort pkg/PLIST >/tmp/P ; sdiff /tmp/x2 /tmp/P ”)

17. “make reinstall && make package ”

18. “pkg_delete blub ”

19. “ find /usr/pkg/ /usr/X11R6/ -type f -newer /tmp/bla ” shouldn’t find anything now

47

Chapter 9. Debugging

20. “pkg_add .../blub.tgz ”

21. Play with it :)

22. “pkg_delete ” - still no file should be left (re-run above “find ”)

23. “make clean && touch /tmp/bla && make install && make clean && make de-

install ” then run the “find ” again. Yes, some software authors write Makefiles that install
files during the build target. Sigh. Re-run the “find ”, and fix thePLIST . Repeat until certain the
software does not install any files that aren’t inPLIST .

24. submit (or commit, if you have CVS access); seeSubmitting.

48

Chapter 10. FAQs & features of the package
system

10.1. Packages using GNU autoconfig
If your package uses GNU autoconf, add the following to your package’s Makefile:

GNU_CONFIGURE= yes

Note that this appends-prefix=${PREFIX} to CONFIGURE_ARGS, so you don’t have to do that
yourself, and this may not be what you want.

10.2. Other distrib methods than .tar.gz

If your package uses a different distribution method from.tar.gz , take a look at the package for
plan9/sam , which uses a gzipped shell archive (shar), but the quick solution is to setEXTRACT_SUFX

to the name after theDISTNAMEfield, and add the following to your package’sMakefile :

EXTRACT_SUFX= .msg.gz
EXTRACT_CMD= zcat
EXTRACT_BEFORE_ARGS=
EXTRACT_AFTER_ARGS= |sh

10.3. Packages not creating their own subdirectory
Your package doesn’t create a subdirectory for itself (like GNU software does, for instance), but
extracts itself in the current directory: seeplan9/sam again, but the quick answer is:

NO_WRKSUBDIR= yes

49

Chapter 10. FAQs & features of the package system

10.4. Custom configuration process
If your package uses a weird Configure script see thetop package, but the quick answer is:

HAS_CONFIGURE= yes
CONFIGURE_SCRIPT= Configure
CONFIGURE_ARGS+= netbsd13

10.5. Packages not building in their DISTNAMEdirectory
If your package builds in a different directory from its baseDISTNAME, see thetcl80 and tk80

packages:

WRKSRC= ${WRKDIR}/${DISTNAME}/unix

10.6. How to fetch all distfiles at once
You would like to download all the distfiles in a single batch from work or school, where you
can’t run a “make fetch ”. But there’s no archive of the distfiles on ftp.netbsd.org and the one on
ftp.freebsd.org contains many distfiles for which there are no ports (yet).

The answer here is to do a “make fetch-list ” in /usr/pkgsrc and use the resulting list.

10.7. How to fetch files from behind a firewall
If you are sitting behind a firewall which does not allow direct connections to Internet hosts (i.e. non-
NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL e.g. if the machine www-proxy.myisp.com is one of the firewalls, and it uses port 80
as the proxy port number, the proxy environment variables look like:

ftp_proxy=ftp://www-proxy.myisp.com:80/
http_proxy=http://www-proxy.myisp.com:80/

50

Chapter 10. FAQs & features of the package system

10.8. If your patch contains an RCS ID
Seepatches/*on how to remove RCS IDs from patch files.

10.9. How to pull in variables from /etc/mk.conf

The problem with package-defined variables that can be overridden viaMAKECONFor /etc/mk .conf is
that make(1) expands a variable as it is used, but evaluates preprocessor like statements (.if , .ifdef

and.ifndef) as they are read. So, to use any variable (which may be set in/etc/mk.conf) in one
of the .if * statements, the file/etc/mk.conf must be included before that.if * statement.

Rather than have a number of ad-hoc ways of including/etc/mk.conf , should it exist, orMAKECONF,
should it exist, include thepkgsrc/mk/bsd.prefs.mk file in the packageMakefile before any
preprocessor-like.if , .ifdef , or .ifndef statements:

.include "../../mk/bsd.prefs.mk"

.if defined(USE_MENUS)

...

.endif

10.10. Is there a mailing list for pkg-related
discussion?

Yes. We are using <tech-pkg@netbsd.org > for discussing package related issues. To subscribe
do:

echo subscribe tech-pkg | mail majordomo@netbsd.org

10.11. How do I tell “ make fetch ” to do passive FTP?
This depends on which utility is used to retrieve distfiles. Frombsd.pkg.mk , FETCH_CMDis assigned
the first available command from the following list:

/usr/bin/fetch
${LOCALBASE}/bsd/bin/ftp

51

Chapter 10. FAQs & features of the package system

/usr/bin/ftp

On a default NetBSD install, this will be/usr/bin/ftp , which automatically tries passive connec-
tions first, and falls back to active connections if the server refuses to do passive. For the other tools,
add the following to your/etc/mk.conf file:

PASSIVE_FETCH=1

Having that option present will prevent/usr/bin/ftp from falling back to active transfers.

10.12. Dependencies on other packages
Your package may depend on some other package being present - and there are various ways of ex-
pressing this dependency. NetBSD supports theBUILD_DEPENDSandDEPENDSdefinitions (beware:
theDEPENDSdefinition is not the same as FreeBSD’s deprecated one, and NetBSD does not use the
FreeBSDLIB_DEPENDSdefinition any more - it proved problematic on ELF NetBSD platforms).

In the following examples, theBUILD_DEPENDSdependencies have the format:file :directory [:stage].
If the stage isn’t specified, it defaults to "install". If the file contains a ’/ ’, it is interpreted as a
regular file - otherwise, the name is taken to be an executable file, and the shell’s searchPATH is
searched forfile . If the regular file is not found, or the executable file is not in the path, then the
pre-requisite package will be built from the sources indirectory , which is usually relative to the
current package’s directory. TheDEPENDSdefinition specifies a package name (which contains its
version number), and the directory containing the package to build if this version of the package is
not installed.

• If your package needs files from another package to build, see theprint/ghostscript5 package
(it relies on the jpeg sources being present in source form during the build):

BUILD_DEPENDS+= ../../graphics/jpeg/${WRKDIR:T}/jpeg-6a:../../graphics/jpeg:extract

• If your package needs to have another package installed to build itself, this is specified using the
BUILD_DEPENDSdefinition, but without specifying the stage ":extract " as above. An example
is theprint/lyx package, which uses the “latex ” binary during its build process:

BUILD_DEPENDS+= latex:../../print/teTeX

• If your package needs a library with which to link, this is specified using theDEPENDSdefinition.
An example of this is theprint/lyx package, which uses the xpm library, version 3.4j to build.

52

Chapter 10. FAQs & features of the package system

DEPENDS+= xpm-3.4j:../../graphics/xpm

You can also use wildcards in package dependences:

DEPENDS+= xpm-*:../../graphics/xpm

Note that such wildcard dependencies are retained when creating binary package. The dependency
is checked when installing the binary package and any package which matches the pattern would
be used. Beware that wildard dependencies should be used with a bit of care. Simple example for
package which needs some version of Tk installed, but doesn’t care which exactly - dependency

DEPENDS+= tk-*:../../x11/tk80

would also match e.g. tk-postgresql-6.5.3, which is not what was needed. ALWAYS ensure that the
wildcard doesn’t match more than it should. For this example, use:

DEPENDS+= tk-[0-9]*:../../x11/tk80

This is safe because package names don’t include digits.

• If your package needs some executable to be able to run correctly, this is specified using the
DEPENDSdefinition. Theprint/lyx package needs to be able to execute the latex binary from the
teTex package when it runs, and that is specified:

DEPENDS+= teTex-*:../../print/teTeX

The comment about wildcard dependencies from previous paragraph applies here, too.

10.13. Conflicts with other packages
Your package may conflict with other packages a user might already have installed on his system, e.g.
if your package installs the same set of files like another package in our pkgsrc tree.

In this case you can setCONFLICTSto a space separated list of packages (including version string)
your package conflicts with.

For examplepkgsrc/x11/Xaw3d andpkgsrc/x11/Xaw-Xpm install provide the same shared li-
brary, thus you set inpkgsrc/x11/Xaw3d/Makefile :

CONFLICTS= Xaw-Xpm-*

53

Chapter 10. FAQs & features of the package system

and inpkgsrc/x11/Xaw-Xpm/Makefile :

CONFLICTS= Xaw3d-*

Packages will automatically conflict with other packages with the name prefix and a different version
string. "Xaw3d-1.5" e.g. will automatically conflict with the older version "Xaw3d-1.3".

10.14. Software which has a WWW Home Page
The NetBSD packages system supports a variable calledHOMEPAGE. If the software being packaged
has a home page, theMakefile should include the URL for that page in theHOMEPAGEvariable:

HOMEPAGE= http://www.netpedia.net/hosting/gqview/mpeg-index.html

The definition of the package should be placed immediately after theMAINTAINERvariable.

10.15. How to handle modified distfiles with the ’old’
name

Sometimes authors of a software package make some modifications after the software was released,
and they put up a new distfile without changing the package’s version number. If a package is al-
ready in pkgsrc at that time, the md5 checksum will no longer match. The correct way to work
around this is to update the package’s md5 checksum to match the package on the master site (be-
ware, any mirrors may not be up to date yet!), and to remove the old distfile from ftp.netbsd.org’s
/pub/NetBSD/packages/distfiles directory. Furthermore, a mail to the package’s author seems
appropriate making sure the distfile was really updated on purpose, and that no trojan horse or so crept
in.

10.16. What does Don’t know how to make

/usr/share/tmac/tmac.andoc mean?
When compiling thepkgsrc/pkgtools/pkg_install package, you get the error from make that
it doesn’t know how to make/usr/share/tmac/tmac.andoc ? This indicates that you don’t have

54

Chapter 10. FAQs & features of the package system

installed the "text" set on your machine (nroff, ...). Please do so:

tar -unlink -pvx -C / -f .../text.tgz

10.17. How to handle incrementing versions when
fixing an existing package

When making fixes to an existing package it can be useful to change the version number inPKGNAME.
To avoid conflicting with future versions by the original author, use a ’nb1 ’ suffix (later versions
should increment this to give ’nb2 ’ and so on).

10.18. Could not find bsd.own.mk - what’s wrong?
You didn’t install the compiler set,comp.tgz , when you installed your NetBSD machine. Please get
it and install it, by extracting it in /:

tar -unlink -pvx -C / -f .../comp.tgz

comp.tgz is part of every NetBSD release, please get the one matching the release you have installed
(determine via “uname -r ”).

55

Chapter 10. FAQs & features of the package system

56

Chapter 11. Submitting

11.1. Precompiled binary packages
Our policy is that we accept binaries only from NetBSD developers to guarantee that the packages
don’t contain any trojan horses etc. This is not to annoy anyone but rather to protect our users! You’re
still free to put up your home-made binary packages and tell the world where to get them.

11.2. packages
First, check that your package is complete, compiles and runs well; seeDebuggingand the rest of this
document. Then, generate a gzippedtar -file of all the files needed for the package, preferably with
all files in a single directory. Place thistar -file to a place where the package maintainers can fetch it
using FTP or HTTP (WWW). Finally, “send-pr ” with category "pkg ", a synopsis which includes the
package name and version number, a short description of your package (contents ofpkg/COMMENT

are OK) and the URL of yourtar -file.

You will be notified if your send-pr has been addressed so you can remove thetar -file.

57

Chapter 11. Submitting

58

Chapter 12. A simple example of a package:
bison

I checked to find a piece of software that isn’t in the FreeBSD ports collection, and picked GNU bison.
Quite why someone would want to have bison when Berkeley yacc is already present in the tree is
beyond me, but it’s useful for the purposes of this exercise.

12.1. Files
The file contents in this section must be used verbatime.

12.1.1. Makefile

$NetBSD$

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}

MAINTAINER= thorpej@netbsd.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.html

GNU_CONFIGURE= yes
INFO_FILES= bison.info

.include "../../mk/bsd.pkg.mk"

12.1.2. pkg/COMMENT

GNU yacc clone.

12.1.3. pkg/DESCR

GNU version of yacc. Can make re-entrant parsers, and numerous other

59

Chapter 12. A simple example of a package: bison

improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

12.1.4. pkg/PLIST

@comment $NetBSD$
bin/bison
man/man1/bison.1.gz
@unexec install-info -delete %D/info/bison.info %D/info/dir
info/bison.info
info/bison.info-1
info/bison.info-2
info/bison.info-3
info/bison.info-4
info/bison.info-5
@exec install-info %D/info/bison.info %D/info/dir
share/bison.simple
share/bison.hairy

12.2. Checking a package with “ pkglint ”
The NetBSD package system comes with a tool called "pkglint" (located in the directorypkgsrc/pkgtools/pkglint)
which helps to check the contents of these files. After installation it is quite easy to use, just change
to the directory of the package you which to examine and execute “pkglint ”:

tron@lyssa:/usr/pkgsrc/devel/bison > pkglint
OK: checking pkg/COMMENT.
OK: checking pkg/DESCR.
OK: checking Makefile.
OK: checking files/md5.
OK: checking patches/patch-aa.
looks fine.

Depending on the supplied command line arguments (see “man pkglint ”) more intensive checks
will be performed. Use e.g. “pkglint -a -v ” for a very detailed and verbose check.

60

Chapter 12. A simple example of a package: bison

12.3. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:

root@pumpy:/u/pkgsrc/lang(1765)# cd /usr/pkgsrc/lang
root@pumpy:/u/pkgsrc/lang(1765)# mkdir bison
root@pumpy:/u/pkgsrc/lang(1766)# cd bison
root@pumpy:/u/pkgsrc/lang/bison(1768)# mkdir files patches pkg

CreateMakefile , pkg/COMMENT, pkg/DESCR andpkg/PLIST as inFilesabove, then continue with
fetching the distfile:

root@pumpy:/u/pkgsrc/lang/bison(1769)# make fetch
>> bison-1.25.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://www-
proxy.myisp.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://www-
proxy.myisp.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://www-
proxy.myisp.com:80/)
Successfully retrieved file.

Generate the checksum of the distfile intofiles/md5 :

root@pumpy:/u/pkgsrc/lang/bison(1770)# make makesum
root@pumpy:/u/pkgsrc/lang/bison(1771)#

Now compile:

root@pumpy:/u/pkgsrc/lang/bison(1777)# make
>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25
===> Ignoring empty patch directory
===> Configuring for bison-1.25

61

Chapter 12. A simple example of a package: bison

creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -
DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -
DHAVE_STRERROR=1 -g ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g print.c

62

Chapter 12. A simple example of a package: bison

cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -
DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt1.c
cc -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o getargs.o gram.o lalr.o lex.o main.o nul-
lable.o output.o print.o reader.o reduce.o symtab.o warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1

Everything seems OK, so install the files:

root@pumpy:/u/pkgsrc/lang/bison(1785)# make install
>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with “pkg_delete bison-1.25 ”.
Should you decide that you want a binary package, do this now:

root@pumpy:/u/pkgsrc/lang/bison(1786)# make package
>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.

63

Chapter 12. A simple example of a package: bison

Creating gzip’d tar ball in ’/u/pkgsrc/lang/bison/bison-1.25.tgz’

Now that you don’t need the source and object files any more, clean up:

root@pumpy:/u/pkgsrc/lang/bison(1787)# make clean
===> Cleaning for bison-1.25

64

Appendix A. Build logs

A.1. Building top

Script started on Fri Oct 3 13:22:31 1997
root@pumpy:/u/pkgsrc/sysutils/top(1342)# make
>> top-3.5beta5.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://ftp.groupsys.com/pub/top/.
Requesting ftp://ftp.groupsys.com/pub/top/top-3.5beta5.tar.gz (via ftp://www-
proxy.myisp.com:80/)
Successfully retrieved file.
>> Checksum OK for top-3.5beta5.tar.gz.
===> Extracting for top-3.5beta5
===> Patching for top-3.5beta5
===> Applying NetBSD patches for top-3.5beta5
===> Configuring for top-3.5beta5
/bin/cp /u/pkgsrc/sysutils/top/files/defaults /u/pkgsrc/sysutils/top/work/top-
3.5beta5/.defaults
chmod a-x /u/pkgsrc/sysutils/top/work/top-3.5beta5/install

Reading configuration from last time...

Using these settings:
Bourne Shell /bin/sh

C compiler cc
Compiler options -DHAVE_GETOPT -O

Awk command awk
Install command /usr/bin/install

Module netbsd13
LoadMax 5.0

Default TOPN -1
Nominal TOPN 18

Default Delay 2
Random passwd access yes

Table Size 47
Owner root

Group Owner kmem
Mode 2755

bin directory $(PREFIX)/bin
man directory $(PREFIX)/man/man1
man extension 1
man style man

Building Makefile...
Building top.local.h...

65

Appendix A. Build logs

Building top.1...
Doing a "make clean".
rm -f *.o top core core.* sigdesc.h
To create the executable, type "make".
To install the executable, type "make install".
===> Building for top-3.5beta5
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c top.c
awk -f sigconv.awk /usr/include/sys/signal.h >sigdesc.h
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c commands.c
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c display.c
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c screen.c
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c username.c
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c utils.c
utils.c: In function ‘errmsg’:
utils.c:348: warning: return discards ‘const’ from pointer target type
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c version.c
cc -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c getopt.c
cc "-DOSREV=12G" -DHAVE_GETOPT -DORDER -DHAVE_GETOPT -O -c machine.c
rm -f top
cc -o top top.o commands.o display.o screen.o username.o utils.o version.o getopt.o ma-
chine.o -ltermcap -lm -lkvm
root@pumpy:/u/pkgsrc/sysutils/top(1343)# make install
>> Checksum OK for top-3.5beta5.tar.gz.
===> Installing for top-3.5beta5
/usr/bin/install -o root -m 2755 -g kmem top /usr/pkg/bin
/usr/bin/install top.1 /usr/pkg/man/man1/top.1
strip /usr/pkg/bin/top
===> Registering installation for top-3.5beta5
root@pumpy:/u/pkgsrc/sysutils/top(1344)#

A.2. Packaging top

root@pumpy:/u/pkgsrc/sysutils/top(1344)# make package
>> Checksum OK for top-3.5beta5.tar.gz.
===> Building package for top-3.5beta5
Creating package top-3.5beta5.tgz
Registering depends:.
Creating gzip’d tar ball in ’/u/pkgsrc/sysutils/top/top-3.5beta5.tgz’
root@pumpy:/u/pkgsrc/sysutils/top(1345)#

66

Appendix B. Layout of the FTP server’s
package archive

Layout for precompiled binary packages on ftp.netbsd.org:

/pub/NetBSD/packages/
README

distfiles/
pkgsrc - > /pub/NetBSD/NetBSD-current/pkgsrc

1.3/
i386/

All/
archivers/

foo - > ../All/foo
...

m68k/
All/
archivers/

foo - > ../All/foo
...

amiga - > m68k
atari - > m68k
...

To create:

• “cd /usr/pkgsrc ; make install ; make package ”

• upload /usr/pkgsrc/packages to ftp://ftp.netbsd.org/pub/NetBSD/packages/‘uname -r‘/‘sysctl -n
hw.machine_arch‘

• if necessary, create appropriate symlinks for architectures sharing the same packages: “ln -s

‘sysctl -n hw.machine‘ ‘sysctl -n hw.machine_arch‘ ”

Disk space needed: approx. 1.3GB for one architecture (as of Jul 2000).

67

Appendix B. Layout of the FTP server’s package archive

68

